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Abstract 

The concepts of dual, inner dual and dualist are reviewed. The application of these 
concepts to polyhexes is briefly described. The concepts of a sparming tree and a weighted 
spanning lxee of dualist are introduced. The uses of the weighted spanning tree of dualist 
in coding and enumerating polyhex hydrocarbons are outlined. 

1. Introduction 

The concept of dualist was introduced in 1968 by Balaban and Harary [1]. The 
terms they used for dualist were characterisüc graph and skeleton. However, Balaban 
[2] subsequently stated that a more suitable term for the characteristic graph is the 
dualist graph. Yet, the dualist graph (or the characteristic graph) is not a graph at all [3]. 

In the initial studies by Balaban and Harary [1] and by Balaban [4], the dualist 
was used as a basis for a systematic nomenclature of polyhex hydrocarbons and for the 
enumeration of cata-condensed polyhexes. It is interesting to note that Smith [5], seven 
years before Balaban and Harary, in his work on capacitive energy and the ionizaüon 
potentials of benzenoid hydrocarbons very cleverly used dualists as a shorthand notation 
for these molecules. Apparently, Balaban and Harary were not at the time aware of the 
work by Smith and did not mention his paper in their contribution. 

Since the pioneering work by Balaban and Harary, the concept of dualist was 
employed in various studies of polyhexes and benzenoids, especiaUy in the last few 
years (e.g. [6-11]). Recently, this concept was extended to the notion of a weighted 
spanning tree of dualist and used as a basis for a novel computer-oriented code of 
polyhex hydrocarbons [12] and for a very fast enumeration of polyhexes [13]. 

In this article, we wish to review the concept of dualist and its evolution, to give 
one example of its use in the chemistry of polyhex hydrocarbons, and to present the 
concept of a weighted spanning tree of dualist. The article is structured as follows. 
Section 2 contains graph-theoreücal concepts that will be used in this paper. The dual 

*This arUcle is dedicated to Frank Harary, the grandmaster of graph theory, and to Alexandru T. Balaban, 
the grandmaster of chemical graph theory. 
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and inner dual of a polyhex am presented in section 2, while the duaüst of a polyhex 
is discussed in section 4. In section 5, the weighted spanning tree of dualist is described. 
Certain uses of this concept are given in section 6. The paper ends with concluding 
remarks. 

2. Graph-theoreticai concepts 

In this paper, we will consider planar hexagonal hydrocarbon structures. These 
will be depicted graph-theoretically by a special kind of hydrogen-suppressed molecular 
graphs [14,15]. The carbon skeleton of benzene is represented by a regular hexagon. A 
single hexagon is caUed by Balaban [16] a hex; hence, a connected set of h hexagons 
is called a polyhex (denoted by P). Polyhexes are thus graphs which may be obtained 
by any combination of regular hexagons such that two hexagons have exactly one 
common edge or are disjoint [17]. Here, we are interested in planar polyhexes. A 
polyhex is planar if, and only if, it can be embedded in the plane. We will adopt the term 
polyhex hydrocarbons for hydrocarbons whose carbon skeletons can be depicted by 
polyhexes. 

The two most studied kinds of polyhexes am cata-condensed polyhexes (cata- 
polyhexes, cata-hexes) and peri-condensed polyhexes (peri-polyhexes, peri-hexes). One 
way to distinguish them is as follows. A polyhex embedded in a plane divides it into 
one infinite region and a number of finite regions [8]. All vertices and edges of a 
polyhex which lie on the boundary of the infinite region form the perimeter of a 
polyhex. The intemal (inner) vertices are those which do not belong to the perimeter. 
Cata-polyhexes do not contain intemal vertices. Strict peri-polyhexes contain intemal 
vertices which am all of the same degree, that is, 3. If intemal vertices of degree 2 
appear, then a given polyhex contains a hole. A hole in a polyhex is simply an n- 
membered ring, with n > 8. Planar polyhexes with holes have various names in the 
literature [19-21] such as, for example, comna-condensed polyhexes or coronoids [22]. 

An important subset of the polyhex family are benzenoid graphs [15]. A polyhex 
is a benzenoid graph if, and only if, it is a 1-factorable graph [17]. A benzenoid-gmph 
B is the graph-theoretical representation of the carbon skeleton of a benzenoid hydro- 
carbon. 1-factorizaüon signifies that the benzenoid hydrocarbon in question possesses 
Kekulé structure(s) [23] because only such polyhex hydrocarbons are expected to show 
similarity in their chemical behaviour with benzene. For example, polyhex hydro- 
carbons without Kekulé structures are extremely unstable [24]. Thus, according to the 
above terminology, there are twenty-two members of the penta-hex hydrocarbon family 
and among them, fifteen benzenoid hydrocarbons. 

A subgraph G' of a graph G is a graph for which all vertices and edges are 
contained in G [25]. InformaUy, a subgraph is any graph G' derived from G by deleting 
any number of vertices or edges, or both. We should note that a graph can be its own 
subgraph. A spanning subgraph is any subgraph G' of G containing all vertices of G. 
A spanning tree of G is an acyclic subgraph containing all vertices of G. 
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A path i s  a finite sequence of edges e 1, e 2 . . . . .  e N, where e i = (73i_ 1" 73i)' 
i = 1, 2 . . . . ,  N; that is, the terminal vertex v., of e., is the initial vertex of el+ 1- A graph 
G is a connected graph if there is at least one path between any two of its vertices. 
Otherwise, a graph G is considered disconnected. A cutset of  a connected graph G is 
a collection of  edges whose removal disconnects G and consequently produces a 
disconnected graph. 

3. The dual and inner dual of a polyhex 

Given a planar polyhex P = P(V, E), its dual P* = P*(V*, E*) can be constructed 
as follows [25-28]: Place one vertex in the center of  each region of P and one vertex 
on the plane outside the perimeter of P and, if two regions have an edge e in common, 
join the corresponding vertices by an e* crossing only e. As an example, in fig. 1 we 
show the construction of the dual for bihex (naphthalene graph). The number of vertices 

I ~ ,' X XI 

" . ' - ~ - . ' 2  

p~ 

Fig. 1. The construction of the dual for the naphthalene graph. 

in P* is given by V* = h + 1, where h is the number of finite regions in P, and the number 
of edges in P* is equal to the number of edges in P, i.e. E* = E. The above dual is also 
caUed the complete or geometric dual [7,25]. The complete dual of  a planar polyhex is 
also a planar graph. It should be noted that the dual of the dual of P is a graph 
isomorphic to the original polyhex. 

An abstract formulation of the geometric dual is a combinatorial definition of 
dual [25]. A graph P* is a combinatorial dual of  P if there is a one-to-one corre- 
spondence between their sets of edges such that a set of  edges of P forms a cycle in P 
if and only if the corresponding set of  edges of P* forms a cutset in P*. 

The concept of  dual has found application in the characterization of planar 
graphs. A connection between planarity of a polyhex (graph) and its combinatorial dual, 
which is known as the Whimey theorem [29], may be formulated as: A polyhex (graph) 
is planar if and only if it has a combinatorial dual. 

The inner dual [30] (sometimes also called bual) is a special subgraph of the dual, 
because it does not contain the vertex corresponding to l.he infinite part of  a plane. It is 
also a much simpler graph than the dual. The inner dual of  a polyhex P* = P*('I,'*, E*) 
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can be obtained by connecting the centers of individual hexagons through the edge that 
is common to two rings [3,15]. The number of vertices in P* is equal to the number of 
hexagons h in P, i.e. 'P'* = h, while the number of edges in P* is equal to the number 
of adjacent hexagons (the number of intemal edges [31 ]) in P, i.e. E* = h - 1 + v., where 
v i is the number of intemal vertices. As examples, in fig. 2 we give the inner duals of 

Fig. 2. The irreer duals of the benzo[g]chrysene 
graph and the benzo[e]pyrene graph. 

O ' O 

one cata-condensed penta-hex (benzo[g]chrysene graph) and one peri-condensed 
pentahex (benzo[e]pyrene graph). (The nomenclature system used for naming polyhex 
hydrocarbons is taken from Dias [32].) 

In the case of cata-polyhexes, the corresponding inner dual always has the form 
of a tree, while in the case of peri-polyhexes, it contains cycles. This property of inner 
duals was usecl by Balaban and Harary [1] for differentiation between cata- and peri- 
condensed polyhex hydrocarbons. The other, less pleasing, property of inner duals - 
their non-uniqueness, i.e. that two or more polyhexes may possess the same inner dual, 
led Balaban and Harary to the concept of dualist. 

The inner duals have found limited use in chemical graph theory, but one 
example of their use in chemistry is very elegant. The inner dual of P may be used for 
counting the spanning trees of a 0abelled) polyhex [7,11 ]. The number of spanning trees 
in gener-~ graphs follows from the matrix-tree theorem [33,34]. In a 0abelled) 
planar polycyclic graph, the problem can be approached via the generalised [35] 
characterisüc polynomial of the corresponding inner dual [7]. The number of 
spanning trees is of interest in calculations of ring current magnetic: properües of 
polycyclic n-systems [36-38]. 
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Let us consider an inner dual P* of a polyhex P and its characteristic polynomial 
qg(P*, x) defined as [7]: 

(0(P*; x) = d e t  ID* - A*I, (1) 

where A* is the adjacency matrix of P* and D* is a diagonal matrix with elements 
d*(k), k = 1, 2 . . . . .  h, where d*(k) is the number of edges in the boundary of the ring 
k of  P that is in a 1 : 1 correspondence with vertex k of P*. To obtain the count of 
spanning trees t(P) of  a polyhex, one inserts 6 for x in tp(P*; x). The above procedure 
is illustrated for the naphthalene graph in table 1. If the azulene graph is, for example, 

Table 1 

The count of spanning trees for the naphthalene graph 

t(P)=cp (P'; x =6)=35 

considered instead of the naphthalene graph, then the polynomial has the follow- 
ing form: ip(G*; x , y ) =  x y -  1, and the spanning tree count is given by: t(G) 
= q ~ ( G * ; x = 7 ,  y = 5 ) = 3 4 .  

4. The dualist of  a polyhex 

We have already mentioned that two or more isomeric polyhexes possess the 
same inner dual. For example, all four cata-condensed unbranched tetra-hexes have the 
same inner dual (see fig. 3). Balaban and Harary [1] introduced the concept of  dualist 
in order to accommodate the structural differences between isomeric polyhexes with the 
isomorphic inner duals. The dualist ©* of a polyhex P can be simply constructed by 
placing a vertex in the center of  each hexagon of P and then connecting those vertices 
which are in adjacent fused hexagons. To this point, the construction of the irreer dual 
and dualist is identical. However, the dualist, unlike the inner dual, preserves the 
geometric information on the direction of ring annelaüon in P. The dualists corre- 
sponding to cata-condensed unbranched tetra-hexes are also given in fig. 3. 

A dualist is not a graph in the strict graph-theoretical sense, that is, a set of  
vertices and a set of  edges, because in the case of  dualist, angles are also important. 
Therefore, we can define dualist as [39] E~" = D*('V*, E*, 0), where the vertex set q/'* 
is the set {h}, E* is the edge set {h - 1 + v/}, and Õis the set of angles between incident 
edges. 
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Fig. 3. The inner dual and dualists correspond- 
ing to cata-condensed unbranched tetra-hexes. 

The dualist is a unique representaUon of a polyhex. In other words, two or more 
non-isomorphic polyhexes cannot possess the same dualists. This property of dualists 
is a basis for their use in the characterization and classification of polyhexes. The dualist 
has thus become an accepted tool for characterizing polyhexes, for nomenclature and 
coding purposes, and for the classification of polyhexes [1,2,4,16,40-43]. Planar 
polyhexes may be classified into the following three classes [43,44]: 

(1) cata-hexes (cata-fusenes), when the dualists äre trees; 

(2) pefi-hexes (peri-fusenes), when the dualists contain 3-membered rings; 

(3) corona-hexes (corona-fusenes), wben the dualists contain larger rings than 3- 
membered rings. 

One example for each of these three classes of planar polyhexes and their dualists is 
shown in fig. 4. 

A number of applicaüons of the concept of dualist are described in the literature. 
Here, we will present orte example: We wish to show that there is a simple connecfion 
between the dualist and the number of Kekulé structures and the number of sextets [8] 
of an unbranched cata-hex, Before we outline this relationship, we need to define the 
following concepts: The aromatic sextet, Clar's representation of a Kekulé structure of 
a benzenoid hydrocarbon, the sextet polynomial, and the L - A  sequence of an unbran- 
ched cata-hex. 

An aromatic sextet (abbreviated to sextet) is def'med as a set of three double 
bonds circularly conjugated as in either of the two Kekulé structures of benzene and is 
represented by a cycle [45]. Two kinds of sextets are disfinguisbed: proper (right) and 
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Fig. 4. Exarnples of cata-hexes (dibenzo[a,c]triphenylene, P1), peri-hexes 
Coenzo[e]anthanthrene, P2)' and corona-hexes (benzo[a]kekulene, P3) and 
the corresponding dualists (D~', D2*, D3*). 

proper improper 

sextet sextet 

Fig. 5. Proper and improper sextets. 

improper (left) sextets [46]. They are depicted in fig. 5. Clar's representation (i.e. the 
Clar graph [46a]) of a given Kekulé structure is defined as a simultaneous substitution 
of all proper sextets by cycles and replacement of all double bonds by single 
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Clar's 

transformation 

Kekulé structure Clar's representation 

Fig. 6. Clar's representation of a Kekulé structure of benzo[a]tetracene. 

bonds (see fig. 6). Two (or more) rings in a benzenoid hydrocarbon am mutuaUy 
resonant if there exists a Kekul6 structure such that all these rings possess an aromatic 
sextet, provided that no two sextets have common bonds. 

The sextet polynomial of a benzenoid graph B, denoted/3(B ;x), is defined as [45]: 

m 

B(B;x) = ~ r(B;k)x k, (2) 
k-O 

where r(B; k) is the resonant sextet number of B which represents the number of ways 
in which k disconnected, but mutually resonant, proper sextets can be chosen from B. 
r(B;0) is defined to be unity for all B, and m is the maximum value of k. The important 
property of coefficients of the sextet polynomial is as follows: 

m 

[3(B;x = 1)= ~ r(B;k)= K(B),  (3) 
k=O 

where K(B) is the number of Kekulé structures of cata-fused benzenoids and thin peri- 
fused benzenoids. Thin peri-fused benzenoids are defined as those peri-condensed 
benzenoid hydrocarbons which do not contain the coronene skeleton as a sub- 
structure [45,46]. As an example, in fig. 7 we give the construction of the sextet 
polynomial for benzo[a]tetracene. 

The sextet polynomial was introduced as a convenient device for the enumeration 
of Clar's sextets [47], a concept which originates from the early work of Armit and 
Robinson [48]. Clar's sextet theory predicts that, of the set of isomeric benzenoid 
hydrocarbons, the one with the largest number of resonant sextets is the most stable 
isomer. The experimental evidence supports Clar's theory [32,49]. 

There are two modes of ring annelation in unbranched cata-hexes, namely, the 
linear mode, denoted by L, and the angular mode, denoted by A. Every unbranched 
catahex P containing h hexagons generates an L-A sequence S(P) given by [50]: 

s ( e )  = {s~ s 2 . . .  sb_ 1 sb}, (4) 

where, by convention: 
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Kekulé structure 

c ~  

Clar's representation 

B(B;x) = 1 + 5x + 3x 2 

Resonant 
sextet number 

r(P;0) 

r(P;1) 

r(P;1) 

r(p;1) 

r(P; 1) 

r(P;1) 

r(P;2) 

r(P;2) 

r(P;2) 

Fig. 7. The construction of the sextet 
polynomial for benzo[a]tetracene. 
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s 1 = s h = L ,  ( 5 )  

s . = A  or L, l < i < h .  (6) 
t 

As an example, the L - A  sequence of the benzo[a]tetracene graph and the corresponding 
dualist are shown in fig. 8. 

P 

S (P )=  (LLLAL}  

L L L 
o o o 

L 

Fig. 8. The L-A sequence of the benzo[a]tetracene 
graph and the corresponding dualist. 

Each L - A  sequence may be divided into several subsequences, the fragmentation 
of the sequence being after each LA pair or before each AL pair (or after each AA pair, 
if there is a series of more than two A's). The pictorial representations of the sub- 
sequences are fragment graphs (subgraphs of dualist) denoted by f(P). The sub- 
sequences and corresponding fragment graphs of the benzo[a]tetracene graph are given 
in fig. 9. 

S(P) = (LLL::AL} 

,,~,,:t z} 
Fig. 9. The subsequences and the corresponding 
fragment graphs of the benzo[a]tetracene graph. 

The most important property of fragment graphs is that each f(P) is related at 
most to one proper sextet [51]. The vertex in f (P)  corresponding to a proper sextet may 
be coloured black. Thus, vertices in each fragment graph may be coloured either by two 
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colours, black and white, in such a fashion that at most only one vertex is black, or by 
one colour, white. This produces v + 1 colourings, where v is the number of vertices in 
f (P).  The colouredf(G)'s can be re-assembled into their initial dualist such that none 
of the resulting coloured dualists contain linear segments with more than one vertex in 
black. The allowed coloured dualists represent the counts of the resonant sextets, and 
each aUowed coloured dualist can be transformed into one Kekulé structure of a 
benzenoid hydrocarbon. 

As an example, we will generate all (coloured) dualists belonging to 
benzo[a]tetracene by combining the corresponding (coloured) fragment graphs: 

2 ? 
o o o + ( ~  = o o o d 

f(P') f(p") ~ *  
(7) 

The fragment graph f (P ' )  gives rise to four coloured graphs: 

A = o o 

B c  ~. o 

Co c s 

Do o o 

The fragment graphf(P')  gives rise to three coloured graphs: 

Q - -  0 

bc ; 

C O  0 

The fragments A - D  and a-c  am combined via (7). In total, there am twelve possible 
combinations, but all of them are not allowed. These twelve combinations are given in 
matrix form in table 2. The number of black vertices in coloured dualists is equal to the 
count of resonant sextets. The quantiües in table 2 immediately lead to the sextet 
polynomial. Each allowed coloured dualist can be easily conver~ed into the correspond- 
ing Kekulé structure. In fig. 10, we give as an example the conversion of coloured 
dualist bC (taken from the matrix in table 2) into the corresponding Kekulé structure of 
benzo[a]tetracene. 
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Table 2 

The counting matrix for coloured dualists 

A B C D 

o .__o__~_/ o _ ~ . , °  ~ : -P o__o_o_/ 
0 0 0 r(P; I } 

~ o-_oJ o_c_-e" 
t iP ;2 )  r {P ;2 )  r IP;2) r(P; I1 

~ ._o_oJ o _ . _ J  o_c ~ / o_o_o_/ 
t i P ; l )  r (P; l )  r (P : l l  t iP ;O)  

O 

Fig. 10. The conversion of coloured dualist bC 
into the corresponding Kekulé structure of 
benzo[a]tetracene. 

This approach, which is based on a rather simple combinatorial procedure, may 
be used to generate resonant sextet numbers of unbranched cata-fusenes according to 
the following protocol: 

(1) represent an unbranched cata-fusene by the corresponding cata-hex; 

(2) transform the unbranched cata-hex into the corresponding dualist; 

(3) divide the dualist into fragment graphs; 

(4) colour each fragment graph; 

(5) re-assemble the coloured fragment graph into coloured dualists, retaining the 
shape of the initial dualist; 

(6) evaluate the sextet number for each coloured dualist and construct the sextet 
polynomial; 

(7) transform, if needed, each coloured dualist into the corresponding Kekulé 
structure of the iniüal unbranched cata-fusene. 

5. The weighted spanning tree of dualist 

The concept of the weighted spanning tree of dualist is introduced with the aim 
of providing a basis for a novel systematic code of polyhex hydrocarbons and for the 
enumeration of planar polyhexes. In this respect, it represents the natural extension of 
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the original work of Balaban and Harary [1] on the concept of dualist. The whole idea 
of introducing the weighted spanning tree of a dualist is akin to the idea of progressing 
from the concept of the inner dual (a graph-theoretical notion) to the concept of the 
dualist (a cross-linkSng of a graph-theoretical notion and a geometric notion). 

A spanning tree of the dualist 09* is an acyclic cönnected subgraph of D* con- 
taining all the verüces of the dualist. Ifthe dualist is a tree, then such a dualist is its own 
spanning tree. If the dualist contains cycles, then such a dualist has several sparming 
trees. An example of a spanning tree (denoted by T* )o f  the dualist corresponding 
to the tribenzo[a,e,i]phenalene graph is shown in fig. 11. The dualist corresponding to 
tribenzo[a,e,i]phenalene has three isomorphic spanning trees. 

,~ o B 
p ~)* T" 

Fig. 11. Polyhex depicting tribemzo[a,e,i]phenalene, 
the related dualist, and a spanning tree of the dualist. 

The weighted spanning tree (denoted by q"*) of the dualist may be introduced in 
the following way. The weight of each vertex in 'T* contains information about the 
absence or presence of neighbouring hexagons in specific directions relative to the 
direction of the starting hexagon. These weights are arbitrary because many different 
conventions may be chosen. In our work, we selected the foUowing convention for the 
directions of the adjacent hexagons and their ordering relative to the entrance edge of 
the starting hexagon: 60 ° to the left, straightforward, 60 ° to the right, and a 1-1 mapping 
of them onto the three numbers: 4, 1 and 2. This is depicted in fig. 12. 

First (~) 
I «i 

Entrance ...... ~ ~I-/--~ ---~" Second (I) 
edge 

\ 

Third (2) 

Fig. 12. Ordcr[ng of directions and thek weighm (Lu parentheses). 
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This idea was also exploited by Balaban [1,2,4,16,42,43]. However, this particular 
selecüon of directions and their weights was the result of our efforts to design a fast 
procedure for counting polyhexes. Thäs choice led to the fastest counting algorithm that 
could be related to our earlier procedure based on the boundary code [52]. 

The step-by-step construction of the weighted spanning tree of the dualist corres- 
ponding to tribenzo[a,e,i]phenalene is given in fig. 13. Because of syrnmetry, the two 
other possible weighted spanning trees that can be obtained from the dualist correspond- 

Fig. 13. The construction of the weighted spanning tree of 
the dualist corresponding to tribenzo[a,e,i]phenalene. 

ing to tribenzo[a,e,i]phenalene are isomorphic to the weighted spanning tree in fig. 13. 
This is not always so. There are cases with the same spanning trees and different 
weights, and cases with different spanning trees and different weights. In such cases, we 
have to choose the representative weighted spanning tree according to a certain conven- 
tion. This is elaborated below. 

The weights of a spanning tree are used to build an N-tuple code [53] whose 
entries are the weights. We named this molecular code the DAST code [12]. DAST is 
an acronym for the dualist angle-restricted spanning tree. The DAST code for the 
weighted spanning tree of tribenzo[a,e,i]phenalene and consequently for the 
tribenzo[a,e,i]phenalene graph is 134010. The selection rule in the case of several 
DAST codes corresponding to several possible weighted sparming trees for the same 
polyhex is to choose lexicographically the smallest code. 

As an example, ler us consider the dibenzo[a,1]pyrene graph. Three orientations 
of this hexa-hex with the corresponding weighted spanning trees and DAST codes are 
given in fig. 14. Among the three possibilities, the code 132020 is lexicographicaUy the 
smallest, and it is thus chosen according to the convention to be the DAST code for the 
molecule. 
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0 
1 

l 3 2 

0 0 

! 0 
, 0 0 

1540B0 132020 17/~000 

Fig. 14. The selection of the weighted sparming trees for the 
dibenzo[a,l]pyrene graph. Arrows indicate the starting hexagons. 

6. The use of the weighted spanning tree of dualist 

The weighted spanning tree of duaJist has so far been used for deriving the DAST 
codes of polyhex hydrocarbons [12] and for a fast enumeraüon of planar polyhexes 
[13,54]. 

In the preceding section, we have shown how the weighted spanning tree and the 
corresponding DAST code can be generated. The DAST code is the unique polyhex 
code whose entries are digits from 0 to 7 describing the neighbourhood of each bexagon 
considered. If there are hexagons in all three directions, then the entry is maximum, 
i.e. 7. If there are no hexagons in any of the three directions, then the entry is minimum, 
i.e. 0. This code can never start with zero, except in one case oniy, that is, in the case 
of a benzene whose code consists of just a single digit: 0. To guarantee that every 
hexagon can be reached, the first hexagon of the polyhex to be considered must be a 
hexagon without neighbours in the "forbidden" directions, i.e. backward 60 ° to the left 
and backward 60 ° to the right. To achieve this, we must start the whole process by 
entering the first hexagon of the polybex across an edge of the polyhex boundary 
between two vertices of valency 2 (then the "forbidden" directions are empty). Such an 
edge must always exist, since on the periphery of the polyhex there are six more vertices 
of valency 2 than of valency 3. Since no hexagon can be entered twice, the DAST code 
contains one digit for every hexagon. 

Once the procedure for constructing the DAST code is established, one can 
directly label each hexagon in a convenienOy oriented polyhex with the appropriate 
entry, which will give rise to the lexicographically smallest code. In fig. 15, we give 
DAST codes for several polybexes. 
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)~ 7222000 

--@ 
61222100 

~~?000000 
422121220 422242220 

Fig. 15. The DAST code for several planar poly- 
hexes. Arrows indicate the sta~ting hexagons. 

One can easily confirm that the selecüon of a different hexagon as a starüng 
hexagon for each polyhex in fig. 15 in all cases results in lexicographically higber 
DAST codes, except in the case of coronene, all of whose six bexagons on the peripbery 
are equivalent. 

The polyhex is completely rcconstructible from the DAST code. For example, 
the perylene graph may easily be recovered from the DAST code: 30300. However, 
there may be many possible starting edges, leading to different codes for the same 
polyhex. To make the code unique and to ease the problem of generating all the unique 
codes, we allow only those starting edges which, when drawn north to south, are most 
western, and among the most western, the most northern. This allows twelve cases (six 
rotational positions of the polyhex and mirroring), from which we choose the lexico- 
graphic minimum to be the unique DAST code (with respect to the chosen order and 
mapping of directions). 

On the basis of the DAST code, a computer algorithm for generaüng and 
enumerating planar simply-connected polyhexes was developed [13,54]. In table 3, we 
give the number of planar simply-connected polyhexes with up to fifteen hexagons. The 
numbers for polyhexes with fourteen and fifteen hexagons are now available for the first 
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Table 3 

The number of planar simply-cormected polyhexes 

Numberof Tot~ number ofplanar 
hexagons simply-connectedpolyhexes 

1 1 

2 1 
3 3 
4 7 

5 22 
6 81 
7 331 

8 1435 
9 6505 

10 30086 

11 141229 
12 669584 
13 3198256 
14 15367577 
15 74207910 

time. For previous computations, the reader is advised to consult the consolidated report 
by Balaban et al. [55], supplemented by He et aL [56], and some of our earlier reports 
on the generaüon and enumeration of polyhexes [44,52,57]. The results in table 3 agree 
with all previous computations, while the results for polyhexes with thirteen hexagons 
were obtained only very recently [13,54]. 

7. Conclusions 

The concept of the weighted spanning tree of dualist is introduced. The evolution 
of this concept starts with dual and passes through several stages. This can be 
schematized in the following way: dual ---) inner dual ---) dualist ~ spanning tree of 
dualist ~ weighted spanning tree of dualist. The starting concept of dual is purely a 
graph-theoretical notion, while the weighted spanning tree of dualist is an example of 
a pragmatic concept often encountered when the graph-theoretical ideas merge with 
ideas from physical or chemical reality. The concept of weight, for example, was 
introduced into the framework of graph theory to make it more usable in physics and 
chemistry (e.g. [15,58,59]). The net result of introducing the concept of the weighted 
spanning tree of dualist is in our case that we found in it a convenient basis for a novel 
compact code for polyhexes and for a powerfu_l computational algorithm which, for the 
first time, allowed computer generation and enumeration of planar simply-connected 
polyhexes with up to fifteen hexagons. 
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